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Abstract
Recently, an extended Wirtinger inequality proved extremely useful in studying
the incipient relaxation dynamics of a nematic liquid crystal cell, in the presence
of a weak anchoring potential. This inequality is proved here in detail and the
specific dynamical problem to which it was first applied is also recalled.

PACS numbers: 0210, 6130, 6810E

1. Introduction

In [1] we studied a mathematical model aiming at describing the behaviour of a novel liquid
crystal display, originally proposed in [2], which appears to perform quickly enough to be
compatible with video applications (see also [3] for a physical mechanism possibly explaining
the fast switching involved in this device and [4] for a more mathematical account of it). An
extended version of Wirtinger inequality in one dimension proved extremely useful in obtaining
a characteristic time for the incipient dynamics of liquid crystals near a rigid material surface,
which is crucial to estimate the applicability of our model to real devices. Here I present an
elementary proof of this extended Wirtinger inequality, hoping that it would also be useful in
the study of other mathematical models. The paper ends with a short account on the application
of this inequality to the specific problem that prompted searching for it.

2. Inequality

Every function u of class C1 on [−h, h] such that

u(−h) = u(h) = 0

satisfies the following inequality:∫ +h

−h

u2 dx �
(

2h

π

)2 ∫ +h

−h

u′2 dx (1)

where a prime denotes differentiation. This is the classical Wirtinger inequality (cf e.g. [5,
p 185]), where the equality sign is attained if, and only if,

u(x) = c cos
πx

2h
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for any constant c. Equivalently, inequality (1) can also be stated as follows:∫ h

0
u2 dx �

(
2h

π

)2 ∫ h

0
u′2 dx (2)

provided that u obeys

u′(0) = 0 and u(h) = 0.

We prove here an inequality which reduces to (2) in a special case. Let AC(0, h) denote
the set of all absolutely continuous real-valued functions on the open interval ]0, h[ and let A
be the class of functions defined by

A := {u ∈ AC(0, h) : u′(0) = 0, u′(h)u(h) < 0}.
The claim is that every u ∈ A satisfies the inequality∫ h

0
u′2 dx − γ 2

u

h2

∫ h

0
u2 dx − u′(h)u(h) � 0 (3)

where γu is the smallest root of the equation

−γu tan γu = hu′(h)
u(h)

. (4)

3. Proof

To prove inequality (3) we first show that whenever γ < π
2 the functional

Iγ [u] :=
∫ h

0
u′2 dx − γ 2

h2

∫ h

0
u2 dx (5)

attains its strict minimum in each class

Aα := {u ∈ AC(0, h) : u′(0) = 0, u(h) = α}
for any given α, and that

min
Aα

Iγ = −α2

h
γ tan γ. (6)

We preliminary remark that Iγ , for γ < π
2 , is bounded from below in Aα for all real α. In fact,

by setting u =: w + α, so that w(h) = 0, one readily arrives at

Iγ [u] =
∫ h

0
w′2 dx − γ 2

h2

∫ h

0
(w2 + α2 + 2αw) dx

�
∫ h

0
w′2 dx − γ 2

h2
(1 + αε2)

∫ h

0
w2 dx − γ 2α

h

(
α +

1

ε2

)
for every ε, where use has been made of the inequality

−2w � −
(

1

ε2
+ ε2w2

)
.

Since γ < π
2 , for any given α, ε can always be chosen so that

γ 2(1 + αε2) <
π2

4
.

Thus, by (2),

Iγ [u] � −γ 2α

2

(
α +

1

ε2

)
.
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The Euler–Lagrange equation associated with the functional Iγ is

u′′ +
γ 2

h2
u = 0

which is solved in Aα by the function

u0(x) = α

cos γ
cos

γ x

h
.

Moreover, by direct computation, one easily sees that the value of Iγ [u0] just equals the right-
hand side of (6) for all values of γ . Since Iγ is a quadratic functional, it is proportional to its
second variation:

δ2Iγ (u)[v] = 2Iγ [v]

where v is any function in AC(0, h) subject to

v′(0) = 0 and v(h) = 0.

Thus, by (2), δ2Iγ is positive definite, whenever γ < π
2 , and so Iγ [u0] is the strict minimum

of Iγ .
Let a function u be given in A. By (4), this ensures that γu < π

2 . Moreover, by setting
α = u(h), we obtain from (6) that∫ h

0
u′2 dx − γ 2

u

h2

∫ h

0
u2 dx − u′(h)u(h) � min

Au(h)

Iγu − u′(h)u(h)

= −u2(h)

h
γu tan γu − u′(h)u(h)

which by (4) yields (3). In the limit as un(h) → 0 in a sequence un of functions in A, γun → π
2 ,

and so inequality (3) reduces to (2).

4. Application

Here we apply inequality (3) to estimate the incipient growth of the solution to a specific
partial differential equation, which arises in the relaxation dynamics of a liquid crystal cell,
potentially of interest for the display industry (see [1] and [4]).

Let (x, t) �→ ϑ(x, t) be a function of R+ × R+ into [0, π
2 ] that solves the equation

τsϑt = ξ 2
s ϑxx − d(x) sin ϑ cosϑ (7)

subject to

ϑx |x=0 = 0 lim
x→∞ϑx = 0 and ϑ |t=0 = ϕ(x)

where a subscript appended to ϑ denotes a partial derivative with respect to the corresponding
variable, both τs and ξs are positive material constants, d is a positive function, decreasing
to zero at infinity, and ϕ is a given function into [0, π

2 ]. The interested reader is referred
to [1] for a derivation of equation (7); here we only recall that ϑ describes the orientation of
the nematic director and that d represents the anchoring potential of a solid plate at x = 0,
diluted over the region in space occupied by the liquid crystal, which decays considerably
within a characteristic length h. Equation (7) combines together two distinctive features, each
prevailing over the other either near the plate or away from it. For x = 0, at least as long as ϑxx

does not grow too large, the evolution of ϑ is essentially driven by the relaxation term on the
right-hand side of (7). In contrast, for x � h, where the anchoring potential has essentially
faded away, the evolution of ϑ is just driven by diffusion.
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We employ (3) to estimate precisely the early relaxation time associated with the given
initial value ϕ. By setting ϑ =: ϕ + u and discarding terms of order two or higher in u, we
obtain from (7) the following equation:

τsut = ξ 2
s uxx − f (x)u + g(x) (8)

subject to

ux |x=0 = 0 lim
x→∞ ux = 0 and u|t=0 ≡ 0

where

f := d cos 2ϕ and g := ξ 2
s ϕxx − 1

2d sin 2ϕ.

We assume that there is h > 0 and T > 0 such that the solution to (8) satisfies

ux(h, t)u(h, t) < 0 for all 0 < t < T

so that u(·, t) ∈ A for all 0 < t < T . Moreover, we define the following localized norm for u:

‖u‖2 :=
√

1

h

∫ h

0
u2 dx.

By multiplying both sides of equation (8) by u and then integrating in x over the interval [0, h],
with the aid of (3) and the classical Cauchy–Schwarz inequality we arrive at

τs
1

2

d

dt
‖u‖2

2 � −ξ 2
s γ

2
u

h2
‖u‖2

2 + ‖f ‖∞‖u‖2
2 + ‖g‖2‖u‖2 (9)

where ‖f ‖∞ is the supremum of f in [0, h]. Since ‖u‖2 vanishes at t = 0, as long as t is
sufficiently small and to within terms smaller than ‖u‖2

2, in the right-hand side of (9) γu can
be replaced by the root γ0 of

−γ0 tan γ0 = lim
t→0+

hux |x=h

u|x=h

.

Since ∫
dy

ay + b
√
y

= 2

a
ln(a

√
y + b)

for a and b real, integrating with respect to t in (9), we show that for t sufficiently small ‖u‖2

satisfies the following upper bound:

‖u‖2 � ‖g‖2

ξ 2
s γ

2
0

h2 − ‖f ‖∞

(
1 − exp

[
−

(
ξ 2
s γ

2
0

h2
− ‖f ‖∞

)
t

τs

])
. (10)

For a smooth solution of (7) such that uxt (h, 0) = utx(h, 0),

u(h, t) = ut (h, 0)t + o(t) and ux(h, t) = utx(h, 0)t + o(t)

and so, since u|t=0 ≡ 0, by (8) γ0 can be estimated in terms of g as

−γ0 tan γ0 = hg′(h)
g(h)

. (11)

We call

τg := τs

| ξ 2
s γ

2
0

h2 − ‖f ‖∞|
the incipient growth time for the solution of (7). Depending on whether ξ 2

s γ
2
0

h2 is larger or smaller
than ‖f ‖∞, the incipient growth of ϑ is bounded or not.
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